|
GNSS enhancement refers to techniques used to improve the accuracy of positioning information provided by the Global Positioning System or other global navigation satellite systems in general, a network of satellites used for navigation. Enhancement methods of improving accuracy rely on external information being integrated into the calculation process. There are many such systems in place and they are generally named or described based on how the GPS sensor receives the information. Some systems transmit additional information about sources of error (such as clock drift, ephemeris, or ionospheric delay), others provide direct measurements of how much the signal was off in the past, while a third group provide additional navigational or vehicle information to be integrated in the calculation process. Examples of augmentation systems include the Wide Area Augmentation System, Differential GPS, Inertial Navigation Systems and Assisted GPS. == Background == The Global Positioning System (GPS) is a satellite-based system for navigation. Receivers on or near the earth's surface can determine their locations based on signals received from any four or more of the satellites in the network. All satellites in the world broadcast on the same two frequencies, known as L1 (1575.42 MHz) and L2 (1227.60 MHz). The network uses code division multiple access (CDMA) to allow separate messages from the individual satellites to be distinguished. Two distinct CDMA encodings are used: the coarse/acquisition (C/A) code, which is accessible by the general public, and the precise (P) code, that is encrypted so that only the U.S. military can access it. The messages sent from each satellite contain information ranging from the satellite health, the satellite's orbital path, the clock state of the satellite, and the configuration of the entire satellite network. 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「GNSS enhancement」の詳細全文を読む スポンサード リンク
|